平成 24 年度『大阪大学工業会賞』受賞研究

リチウムイオン 2 次電池の充放電挙動解明を目指した 走査型電子顕微鏡その場観察法の開発

大阪大学大学院工学研究科 応用化学専攻 物質機能化学コース 博士前期課程2年 桑畑研究室

築 鐘 리

【緒言】

イオン液体は常温で液体の塩であり、高い化学・熱 的安定性、優れたイオン伝導性、広い電位窓を有する といった特性を持つため¹⁾、電池などの電解液への利 用が盛んに研究されている。加えて、各イオンの分子 構造とその組み合わせを変えることにより、物理化学 的特性を容易に変化させることができるため、その他 様々な分野においてその応用が期待される。当研究室 では、イオン液体の有する難揮発性に着目し、イオン 液体と真空技術を組み合わせた新規な材料創成や分析 技術の開発に取り組んできた²⁾。その一例として、イ オン液体を利用した電子顕微鏡観察法を挙げることが できる。電気化学測定機器を接続した走査型電子顕微 鏡 (SEM)内にイオン液体を電解液とした電気化学 セルを導入することで、in situ SEM 観察システム (図 1) を確立した³⁾。光学顕微鏡を用いた in situ 観察例

図1 in situ SEM 観察法の概観

も多々報告されているが⁴⁾、光学顕微鏡に比べて SEM は遥かに高分解能な観察が可能である。当研究 室では過去に、SEM を用いてポリピロール電極のレ ドックス反応により電極幅が変化する様子を観察し、 銀の析出溶解過程のその場観察にも成功している⁵⁾。

東日本大震災以降、低環境負荷の発電プロセスで得 られた電気エネルギーや余剰電力を少しでも効率よく 蓄電するため、新たな高容量2次電池の開発が求めら れている。その中でも現在最も研究が盛んに進められ ているエネルギーデバイスがリチウムイオン2次電池 である。一般に市販されているほとんどの小型リチウ ムイオン2次電池は、正極にコバルト酸リチウム (LiCoO₂)、負極にグラファイトが用いられており、 それぞれ充放電反応は以下の通りである。

(正極) $LiCoO_2 \rightleftharpoons Li_{1-x}CoO_2 + xLi^+ + xe^-$

(負極) $xLi^+ + xe^- + 6C \rightleftarrows Li_xC_6$

グラファイト負極の理論容量は 372 mAh g⁻¹であり、 理論限界に来ている。更なる高容量負極材料として近 年注目されているのは、合金化・脱合金化反応を蓄電 反応とする合金系負極の Si、Sn、Sb などである。そ の中でも Si は理論容量が 4200 mAh g⁻¹ とグラファ イト負極の10倍以上もの理論容量を有するため、次 世代リチウムイオン2次電池負極材料として研究が盛 んに行われている。Si にはほとんど電子伝導性がな いため、導電助剤や結着剤を混ぜた複合電極における 研究が一般的であり、その研究はまだ実用化という段 階まで進んでいない。また実用化まで至らない大きな 原因として、Si 負極は充放電時に体積が大きく変化 するため、Si 負極の剥離および微粉化が生じやすく、 急激な容量低下の原因となり、サイクル特性がとれな いという現象が報告されている⁶⁾。しかし実際のリチ ウムイオン2次電池系でこのような劣化過程が起こっ ているかどうかは不明であり、その充放電挙動をその

場観察し、正確に理解することは電池性能の改善にお いて非常に重要である。

また近年では有機溶媒ではなく、難燃性や電気化学 的に安定であるという特性から安全性に優れているイ オン液体を電解液に用いたリチウムイオン2次電池の 開発が進められている。イオン液体を電解液に用いた リチウムイオン2次電池は通常の電池系と同様の方法 で評価することが出来るだけでなく、当研究室の in situ SEM 観察システムを用いた視覚的な評価も可能 となるため、電極界面反応の最適化が容易になること が期待できる。

以上を踏まえ、本研究ではイオン液体を電解液に用 い、in situ SEM 観察が可能となるようなリチウムイ オン2次電池セルを構築し、Si 負極の充放電時挙動 を観察し、リチウムイオンの挿入脱離メカニズムの解 明を試みた。

【実験】

図2のように、電解液を十分に含浸させたセパレー タ(ガラス繊維フィルター)の両面を Si 負極および LiCoO2 正極で挟み込み、その外側にスライドガラス を配置し、クリップで固定した2極式セルを本実験の 電池セルとした。(本セルは実際のリチウムイオン2 次電池と同様の構成を有しているため、実電池系にお ける充放電挙動を観察することが可能である。)なお、 電解液には1M Li[Tf,N]を溶解させた [C,mim][(FSO,),N] を用いた。SEM 内で充放電を繰り返しながら、負極 部分を真上からリアルタイムで観察し、ビデオ撮影も 行った。C/5の電流値(5時間で満充放電可能な電流 値を示す。) で充放電を行い、その際の Si 負極の in situ SEM 観察を行った。初回充電の時間は2時間、2 回目以降は充電時間を1時間に設定し、放電はカット オフ電圧に達するまで行った。カットオフ電圧は下限 (充電時)を-4.2 V vs.LiCoO₂、上限(放電時)を-2.5 V vs.LiCoO₂に設定した。

【結果および考察】

in situ SEM 観察の結果が図4であり、セパレータ | Si 負極界面部分の SEM 像である。電極内部から充

図 3 1- エチル -3- メチルイミダゾリウムビス (フルオロスルフォニル)アミド ([C₂mim][(FSO₂)₂N])

電時の膨張で Si 負極が押し出されてくる様子を確認 することができた。また放電では、充電と逆の方向に 収縮して戻っていく様子や粒子として細かい粒子に変 化する様子も見られた。図5 に充放電の回数と Si 負 極の電極幅の変化をまとめた結果を示す。全体的に充 電反応による体積変化の割合に比べて、放電による収 縮変化は非常に小さいという現象がよく分かる。この 結果から合金化した Li が Si 負極から電解液中にイオ ンとして戻る際の活性化エネルギーが非常に高いこと が予想される。

図4 各充放電後のSi 負極表面形態の比較(1)

また図6に示すように初期状態と7回目の放電後 のSi負極の様子を比較すると、明らかにSi複合電極 部分が大きく膨張して崩壊し、集電体から剥離してい る様子が分かる。これらのSEM像から、Si負極の充 電時の大きな体積膨張と放電時の僅かな収縮の繰り返 しによって、負極は充放電サイクルを繰り返すごとに 膨張し、結果として、集電体から活物質が剥離して電 子伝導パスが取れなくなるという劣化の過程を視覚的 かつ in situ で確認することができた。一方、LiCoO₂ 正極は充放電時の体積変化が非常に小さいことが知ら れており、充放電を繰り返しても大きな形態変化は見 られなかった。

図6 初期状態と7回目の放電の Si 負極劣化の様子

【総括】

イオン液体を電解液に用いた電池セルを作製し、実際のリチウムイオン2次電池系における"走査型電子

顕微鏡によるその場観察法"を開発することが出来 た。本手法は光学顕微鏡に比べて遥かに高分解能で観 察することが可能であり、電子顕微鏡内に導入可能な セルの自由度が高く、非常に簡便な方法であるため、 電池電極挙動を in situ で観察する上で非常に有用な 手法となりうると考えられる。本研究では、次世代高 容量負極として期待できる Si 負極の in situ SEM 観 察を行い、充電時には大きな体積膨張と放電時には僅 かな収縮を確認することが出来た。よって充放電サイ クルを繰り返すことで Si 負極全体として膨張し、集 電体から活物質が剥離して電子伝導パスが次第に失わ れることがリチウムイオン2次電池系における劣化過 程であることが分かった。

<参考文献>

- Ohno, H. Electrochemical Aspects of Ionic Liquids; Wiley Interscience: New York, 2005.
- Kuwabata, S.; Tsuda, T.; Torimoto, T. J. Phys. Chem. Lett. 2010, 1, 3177–3188.
- Arimoto, S.; Kageyama, H.; Torimoto, T.; Kuwabata, S. Electrochem. Commun. 2008, 10, 1901–1904.
- Sano, H.; Sakaebe, H.; Matsumoto, H. Chem. Lett. 2013, 42, 77–79.
- Arimoto, S.; Sugimura, M.; Kageyama, H.; Torimoto, T.; Kuwabata, S. *Electrochim. Acta*. 2008, 53, 6228–6234.
- 6. 電気化学会、電池技術委員会 電池ハンドブック;オーム 社

現在は旭化成ケミカルズ株式会社 にて食塩電解槽イオン交換膜の製 造に携わっています。 ものづくりの現場を肌で感じるこ との出来る"製造"に、研究室時代 とは違ったやり甲斐を感じていま す。

(応化 平成23年卒 25年前期)