ホウ素中性子捕捉療法(BNCT)の工学研究

大阪大学大学院工学研究科環境・エネルギー工学専攻

1. はじめに

悪性腫瘍(がん)は、厄介な病気である。特に日本 では、1980年頃から脳疾患を抜いて死因の1位であ り1)、国を挙げて取り組むべき病気と認識されている。 その主たる治療法は、手術、化学療法及び放射線治療 で、それぞれに一長一短があるが、どの治療法を用い るかは基本的に患者の意思で決定する。中でも放射線 治療は、一般に低侵襲で薬剤による副作用が少ないこ とが知られているが、一方で、放射線被ばくが避けら れない。放射線治療には、主として2つの方法が知ら れている。1つは、電磁波(X線やy線)を用いるも の (ガンマナイフ、サイバーナイフ) であり、最も早 くから普及した治療法である。近年では、よりピンポ イントな照射を実現する IMRT(強度変調放射線治療) も実用化されている。もう一つは、荷電粒子(陽子線、 炭素線)を用いる粒子線治療であり、比較的最近実用 化されたものである。現在は、先進医療に指定されて いる。国内では、10か所ほどの加速器施設を備えた 医療機関で治療を受けることができる。

前者の電磁波を用いる方法では、電磁波の物質との 相互作用により発生する荷電粒子(電子)を利用し、 がんを破壊する。つまり、がんも正常細胞も同じ確率 でダメージを受けるため、放射線をできるだけ腫瘍に 集中させ、正常細胞への被ばくを少なくしている。一 方、粒子線治療では、荷電粒子の著しい特徴であるブ ラッグピークの形成(停止する直前に多くのエネル ギーを失い周りに与える特性)を利用する。腫瘍の深 さに応じて荷電粒子のエネルギーを変化させ、ブラッ グピークの位置を腫瘍位置に合わせて照射すること で、正常細胞の被ばくを抑えながら腫瘍を死滅させる ことができる。

このような状況のなか、今、新しい放射線がん治療 法が実用化されようとしている。ホウ素中性子捕捉療 法(Boron Neutron Capture Therapy (BNCT)) で ある。理論的には、Chadwick による中性子の発見直 後に Locher によりその可能性が指摘されていたが、

村 田 勲

その後の長年の研究により、原子炉で臨床試験が進め られるほどになってきた。近年では、熱中性子(雰囲 気温度中性子)に代わり熱外中性子(0.5eV~10keV) を使うことで、特に脳腫瘍で開頭の必要がなくなった ため著しく進展し、日本では治療ケース数が増大して いる。しかし、一方で大きな問題がある。BNCT に は強力な中性子源が必要で、これまでは原子炉を使用 してきた。しかし、日本では病院内もしくは病院に隣 接するかたちで原子炉を建設することができない。こ れは、極めて深刻な問題であり、日本における BNCT の普及を妨げていると言える。このような状況の中、 日本は世界に先駆け加速器中性子源による BNCT を 目指している。加速器なら病院内立地が可能だからで ある。加速器を用いた BNCT は現在、京都大学が日 本をリードしている。また、国内ではいくつかのプロ ジェクトが並行して動いている。今まさに BNCT は、 日本において、加速器を利用することで実用化に向け て動き出したといえる。

本報では、著者の研究室で進めている BNCT の工 学研究について、阪大加速器 BNCT(CSePT(Cell Selective Particle Therapy))プロジェクトにも触れ ながら詳述する。2章では BNCT の原理を述べ、3章 でその工学的課題を抽出し、4章及び5章で現在研究 室で進めているいくつかの研究について概観する。

2. Boron Neutron Capture Therapy (BNCT)²⁾

ホウ素中性子捕捉療法(Boron Neutron Capture Therapy (BNCT))の原理を図1に示す。¹⁰Bを含む 薬剤を投与することで、腫瘍に¹⁰Bを蓄積させる。体 外から、エネルギーが低い熱中性子もしくは熱外中性 子を照射する。中性子は、¹⁰Bと次の核反応を起こし 荷電粒子(アルファ粒子、リチウム原子核)を放出す る。

$${}^{10}\text{B} + n \rightarrow {}^{4}\text{He} + {}^{7}\text{Li} + 2.79 \text{ MeV (6\%)}$$

$$\rightarrow {}^{4}\text{He} + {}^{7}\text{Li}^{*} + 2.31 \text{ MeV (94\%)}$$

$${}^{7}\text{Li}^{*} \rightarrow {}^{7}\text{Li} + \gamma \text{ (478 keV)}$$

これらの粒子は1MeV 程度のエネルギーを持つた め、人体細胞内における飛程は 10µm 程度となる。こ れは、細胞の大きさと同程度であり、¹⁰B が蓄積され ている細胞のみを破壊することができる。つまり、 ¹⁰Bを腫瘍細胞にのみ集積させることにより、細胞レ ベルで腫瘍細胞を選択的に治療することが可能にな る。ただし、中性子そのものによる正常細胞の被ばく もある。しかし、図2に示す通り、¹⁰Bの核反応断面 積は、エネルギーの低い中性子の場合、通常の原子核 (例として天然炭素と⁵⁶Feを示す)に比べ極めて大き く(1000倍程度)、その影響は低く抑えられる。更に、 正常細胞への¹⁰Bの蓄積も認められるが、いわゆる T/N (腫瘍 (T) と正常細胞 (N) への蓄積 ¹⁰B 濃度比) と呼ばれる指標は、2~7程度となり、正常細胞への ¹⁰Bによる被ばくは必ず半分以下に(実際には数分の 1以下に)抑えられる。以上のことから、通常の放射 線治療では、複数回の治療は不可能であるが、BNCT では、同一個所でも数回程度の繰り返し治療が可能に なる大きな利点がある。他の治療法との違いを厳密に 言うことは難しいが、正常細胞への被ばくについては、 X線もしくはy線による治療は、粒子線治療と比べる と少し大きく、BNCT は粒子線治療に比べてかなり 少なくなる。また、¹⁰Bの蓄積が認められる細胞のみ を死滅させることができるため、腫瘍細胞が正常細胞 の間に侵入して存在する浸潤がんであっても、腫瘍細 胞にのみ¹⁰Bを蓄積させることができれば、腫瘍細胞 のみを死滅させることが可能である。

ここまでで明らかな通り、BNCT は放射線治療で あるが、¹⁰B が腫瘍に蓄積されている必要がある点で、 純粋な物理的手法とは言えない。¹⁰B を腫瘍細胞に導 くキャリアが必要になる。そのようなキャリアとして、 BPA(ボロノフェニルアラニン)と BSH(ボロカプ テイト)が知られている。最近では、その他のキャリ ア(ナノパーティクルやウイルスの応用)についても 検討が進められているが、いずれにしても BNCT の 成否は、薬剤の性能に大きく左右される。またそれは、 中性子源の性能とのトレードオフの関係にある。つま り、もっと性能の良い薬剤が開発されれば、中性子源 に対する要求が緩和され、もっと性能の良い中性子源 が開発されれば、薬剤に対する要求も緩和される。 BNCT 研究は医と工が密接に連携しつつ進められる べきものであり、これまでの放射線治療の開発とは様 相が異なる。BNCT の成否は正にその部分にかかっ ていると言ってよく、研究者と技術者の模索が続けら れている。

図 2¹⁰B, ^{nat}C 及び ⁵⁶Fe の反応断面積

3. BNCT の工学的研究課題

3.1 中性子源

BNCT は今、世界的に普及しようとしている。優 れた治療効果が期待できる新しい放射線治療法との認 識が、医師や患者間に広がってきたからである。しか し、そこには工学的な問題がいくつか残されている。 なかでも最も重要なものが、加速器中性子源の開発で ある。既に述べたとおり、日本は世界に先駆け、加速 器を用いた BNCT を実現させようとしている。これ までは、BNCT 用中性子源として原子炉が使われて きた。具体的には、日本には医療用の原子炉がないた め、研究用原子炉(京都大学の原子炉(KUR)及び 日本原子力研究開発機構の原子炉 (JRR-4)) が使わ れてきた。つまり、日本国内に2か所しかないため、 患者と医師は、治療のために必ずどちらかの原子炉に 行かねばならなかった。また、研究用原子炉であるた め、治療を行うには予め原子炉のマシンタイムを予約 する必要があり、自由に使用できないという問題も あった。治療以外の研究にも使用されるからである。 つまり、日本国内に2か所しかないことが根本的な問

題となっていた。しかし実は、研究用原子炉はもちろ んのこと、たとえ医療用であったとしても、基本的に 原子炉施設を病院内もしくは病院に隣接して建設する ことは、日本国内では法律上の縛りがあり不可能であ る。非常に将来性があると考えられる新しい治療法で あるが、普及させることは簡単ではない。この問題を 解決するため、加速器を使うアイデアが提案された。 加速器は、PET などの放射性薬剤を作るために既に 病院内に導入されており実績がある。もし加速器を用 いて中性子を発生させ、その中性子で BNCT を実現 できた場合、法律上の問題は無いと言える。これが、 加速器駆動型 BNCT (Accelerator Based Neutron Source - BNCT (ABNS-BNCT)) である。もちろん、 その可能性については、以前から知られていたが、加 速器の工学技術的な問題で実現は難しいと考えられて きた。しかし近年、技術革新が進み、若干中性子源強 度が弱い状態ではあるが、実現の可能性が出てきたと 考えられている。その開発研究は世界的に進められて いるが、日本が中心的存在であり、実際、唯一日本国 内でのみ複数の ABNS-BNCT プロジェクトが並行し て進行している。現在日本国内で進行しているプロ ジェクトを表1にまとめた。大きく分けると、Beを ターゲットとした装置と Li をターゲットとした装置 がある。著者のグループのプロジェクトはLiを用い たものであり、次章に詳しく述べる。Be を用いた手 法は、京都大学や筑波大学のグループが主導的に研究 を進めており、既に京都大学は熊取にサイクロトロン 加速器を用いた中性子源を建設し、現在治験を進めて いる。Beを用いる場合、一般的には(2)式に示す陽 子入射による中性子発生反応を用いることになるが、 入射陽子のエネルギーを数 MeV 以上と高くする必要 があり、中性子の発生量が多い半面、発生中性子のエ ネルギーが高くなる他、付随的に発生する二次 y 線の 量も多いことが知られている。そのような問題に対す る対策を施したうえで、BNCT に使用しなければな らないという制約がある。

 ${}^{9}\text{Be} + p \rightarrow {}^{9}\text{B} + n - 1.85 \text{ MeV}$ (2)

Liを用いる場合も陽子を入射させる。中性子は、(3) 式の核反応により生成するが、図3の反応断面積図 に示す通り、入射陽子のエネルギーは低くて良く、そ れにより発生中性子のエネルギーを低く抑えることが できるところに特徴がある。問題は、Liの融点が低 いことであり、それが致命的でこれまでは実現は難し いと考えられてきた。陽子による熱付与にターゲット が耐えられなかったためである。著者のプロジェクト では、液体リチウムを用いることとしており、この問 題をクリアできると考えている。

 $^{7}\text{Li} + p \rightarrow ^{7}\text{Be} + n - 1.64 \text{ MeV}$ (3)

表1 日本国内の加速器BNCTプロジェクト

Project in Japan	Target	p Energy	Current	Accelerator
National Cancer Center (with CICS, AccSys)	Li	2.5MeV	25mA	RFQ+DTL
Fukushima Pref.(=Kyoto Univ. Project)	Be	30MeV	1.2mA	Cycrotron
(with Kyoto Univ., Sumitomo Heavy Industry)				
Ibaraki Pref., Tsukuba Univ.	Be	8MeV	10mA	RFQ+DTL
(with KEK, JAEA, Hokkaido Univ., MHI)				
Tokyo Institute of Technology	liq. Li	1.9 MeV	20mA	RFQ
(with Sukegawa electric)				
Osaka University	liq. Li	2.5 MeV	30mA	Electrostatic
(with Birmingham Univ., Sumitomo Corp.)				

(EXFOR (http://www.nndc.bnl.gov/exfor/exfor.htm)で作成・引用)

3.2 中性子場の特性評価

ABNS-BNCT の実現が難しい理由は、一言で言う ならば中性子源強度が弱いことである。これは純粋に 工学的な理由からであるが、それを克服することは未 だ少し難しい。現状の強度では、成立性がギリギリの 状態であることから、工学的な設計の工夫により実現 させる努力がなされている。ただし、2章で述べたと おり、薬剤開発の進展がある場合、工学的な要求が緩 和される可能性はある。中性子源強度が弱い場合、必 然的に患者はターゲットから近い位置で照射を受ける ことになる。結果として、BNCT に不必要な、エネ ルギーの高い中性子や、高エネルギーの二次 γ 線を被 曝する可能性が高くなる。もちろんそのような不必要 な被曝は極力避ける必要があるが、全く無くすことは できないため、実際にどの程度の被曝をしたか、もし くはするかを知るため、源中性子の特性を治療前にき ちんと把握しておくことが極めて重要となってくる。

- 具体的には以下のような物理量を知る必要がある。
- ・源中性子強度: ターゲットで発生する毎秒あたりの中性子数
- ・熱外中性子束強度:患者位置(ビーム出口)における BNCT に有効な熱外中性子の数
- ・中性子スペクトル:ターゲットもしくは患者位置 (ビーム出口)における中性子 のエネルギー分布

このような数値は、腫瘍に対する治療効果を推定す るために重要であるが、それより人体の正常細胞に対 する被曝線量を決定する上で必要不可欠なものであ る。もちろん、被曝線量については、直接物理的な方 法により計測することも必要で、理論計算の結果も鑑 み正確な評価をすることになる。なお、これらの特性 は、実際には技術が確立された原子炉 BNCT であっ ても実験的に決定することが難しいことが知られてい る。

3.3 治療効果計測

BNCT の治療効果は現在、計算と計測を組み合わ せて評価されている。治療効果は、それぞれの場所に おけるN σ (E) ϕ (E)で計算される。ここで、Nは、 ¹⁰Bの原子数密度、 $\sigma(E)$ は¹⁰Bのエネルギー依存(n, a) 反応断面積、 $\phi(E)$ はエネルギー依存の中性子束であ る。 *σ*(E) *φ*(E) は、実際の計算ではエネルギー積分 となる。この計算を実行するにあたり、問題となるの 確な数値が必要になるからである。しかしこれらの物 理量を正確に知ることはなかなか難しい。現状、Nに ついては、FBPA-PET と呼ばれる¹⁹F をラベルした ホウ素薬剤を用いた PET により、相対3次元集積量 を推定し、別途血中濃度を計測するなどして絶対値が 評価されている。 $\phi(E)$ については、中性子の詳細な 輸送計算を行い、照射中に体表面での積分中性子量を 放射化箔で計測し補正することで評価している。以上 の方法は、間接的であり、その精度を正確に議論する ことは難しい。一方、治療効果を直接計測できないか、 という試みが研究されている。治療効果を計測する SPECT (Single Photon Emission Computed Tomography) 装置の開発である。その原理は、(1) 式から簡単に理解することができる。¹⁰B(n, a)⁷Li 反応は、その94%が7Liの励起状態、7Li*、に遷移する。 ⁷Li* は、即発的に 478keV の y 線を放出し基底状態に 戻る。この放出 y 線を SPECT 的に計測することで、 ¹⁰B(n, α)⁷Li 反応の起こった数、つまり治療効果を 直接、しかもリアルタイムで計測することができる。

4. 阪大 ABNS-BNCT (CSePT) プロジェクト³⁾

著者の研究室では現在、医学研究科、歯学研究科、 薬学研究科及び企業と協力し、阪大発 ABNS-BNCT 装置の開発を進めている。加速器により中性子を発生 させ、その中性子により BNCT を行うものであり、 プロジェクトチームでは、この装置を CSePT (Cell Selective Particle Therapy) と呼んでいる。CSePT では、金属 Li をターゲットとしており、中性子は(3) 式の核反応により発生する。入射陽子のエネルギーを 2.5MeV 程度にした場合、10mA あたり 1x10¹³n/sec 程度の中性子を得ることができる。この強度は、 BNCT が実現できるギリギリのラインとして知られ ている。図3は、この核反応の反応断面積である。反 応が起こる閾エネルギーは、1.88MeVであり、発生 する中性子のエネルギーは、数 10keV ~ 800keV 程 度となる。反応断面積が閾エネルギーを超えると、陽 子エネルギーの上昇と共に急激に断面積が上昇してい ることが見て取れる。このことが、エネルギーの低い 中性子を大量に作り出せる著しい理由となっており、 Be ターゲット方式に対して有利な点と言える。しか し、2.5MeV で 10mA の熱負荷は厳しく、金属 Li を 25kWの発熱から守る必要がある。これが実現困難で あると認識され、長年の間、p-Liタイプの BNCT 用 中性子源は、その性能のすばらしさは認知されながら 実現してこなかった。幸いなことに阪大工学部は、液 体Liを取り扱う技術を所持しており、そのノウハウ を利用することができる。この技術は、核融合研究を 進めるための加速器中性子源の要素技術であり、国内 では唯一の技術である。これにより、液体 Li を用い た ABNS-BNCT 装置の開発が可能となった。残りの 問題は、加速器と中性子減速アセンブリである。加速 器については、米国に 10mA、2.5MeV の性能をクリ アできる会社がある。加速器の形式は静電型であり、 少し特殊なものであるが、基本原理はコッククロフト ワルトンタイプに近く、その信頼性は高い。最後の問 題が中性子減速アセンブリである。BNCT は、図2 に示す通り、エネルギーの低い中性子(熱中性子)が 必要である。近年は、もう少しエネルギーの高い熱外 中性子も利用するようになってきている。エネルギー

を高めることで、少し深部の腫瘍を治療することがで きる。いずれにしても源中性子のエネルギーは、熱も しくは熱外中性子よりもかなり高く、一般的に中性子 を患者に導く際に適切な減速材を用い減速する必要が ある。一方で、3章でも述べたとおり、加速器中性子 源の強度は原子炉に比べてとても弱い。患者位置で十 分な熱/熱外中性子束強度を得るためには、患者自身 がターゲットに近づく必要があり、結果として、必要 十分な減速材や遮へい材を設置することが困難とな る。つまり、減速が不十分な高速中性子や二次的に発 生する高エネルギー y 線の漏えいが増え、がん治療は できたとしても正常組織への被ばくを増やす結果にな りかねない。以上の通り、ターゲット周りの中性子減 速アセンブリ(減速材と遮へい材の組み合わせ配置) の設計は極めて複雑で、慎重に実施する必要がある。 著者の研究室ではこれまで、CSePT の中性子減速ア センブリの設計を一貫して担当、実施してきた。

表2は、CSePTの仕様である。数値に幅を持たせ ているが、これは、初号機の設計であるためである。 熱外中性子束強度を 1x10⁹ n/sec/cm² 程度まで高くし ながら、中性子のエネルギー分布を BNCT に適合す るようにコントロールする、という部分に設計の困難 さが存在する。Li については、液体 Li の流速が最大 で 30m/sec、最大温度は 450℃としている。初号機は、 大阪大学自由電子レーザー研究施設に建設予定であ る。表3が中性子減速アセンブリ設計における核設 計目標値である。最初の4項目は、IAEA が定める設 計目標推奨値⁴⁾である。熱外中性子東強度のほか、 重要な数値として、熱外中性子束の熱中性子束に対す る強度比がある。熱外中性子を使う場合は、熱中性子 を取り除く必要があるためである。逆も真であるが、 両方をミックスして使用する場合もある。3番目は、 高速中性子と y 線の線量の制限である。必要な放射線 は熱外中性子であるため、それ以外の不要な放射線の 線量をできるだけ少なくする、という意味である。 Gy・cm²は、見慣れない単位であるが、単位熱外中 性子束強度当たりの Gy 値である。4 番目は、ビーム 性能の指標である。腫瘍にのみ中性子を照射するため にはできるだけビーム状になっている必要がある。こ れら以外に本設計では3つの新たな目標値を設定し た。 先の 4つの 項目は、 IAEA が 原子炉 BNCT の 設 計の目安として与えているものであるが、CSePT は、 加速器中性子源を用いているため、新たに全身線量に 対する制限を設けることとした。制限の絶対値は施設 ごとに異なることになるが、他の加速器 BNCT 施設 でも取り入れるようにすべき制限値であると考えてい る。また、残りの2つについては、機器のメンテナン ス及び最終処分の観点から設定している。機器の性能 や機能の成立性というよりは、実用を考えた場合の制 限値となっている。

核設計は、基本的に中性子とy線の輸送計算による。 今回は、そのために汎用3次元モンテカルロ輸送計算 コード MCNP-5⁵⁾を用いた。このコードは、米国 LANL で開発されたもので、世界で最も広く使用さ れている中性粒子輸送計算コードである。計算で使用 した源中性子の強度と角度度分布については、著者の 研究室のメンバーが東北大学のダイナミトロン加速器 で測定した結果を使用した。エネルギー分布について は、IAEA が編纂したデータベース (DROSG-2000⁶⁾) を利用した。中性子減速アセンブリの設計は、1次元 計算による基本減速材料の選別後、2次元計算による 粗い設計を実施し、3次元の詳細設計を行った。最新 の設計結果を図4にしめす。陽子ビームは上部から 入射し、中心付近に Li ターゲットが設置されている。 この設計では、まだ Li の流路までは含まれていない。 ターゲット周りは黒鉛で覆われている。反射材として の役割とエネルギーを過度に下げすぎないこと、そし て、中性子を吸収し難い材料として採用している。ター ゲットの下には、フッ化物と重水素化物が設置されて いる。フッ化物によりある程度エネルギーを下げるの であるが、それだけでは、減速が十分ではないため、 重水素化物を加えている。軽水素では減速しすぎるた めであるが、重水素を用いることで、中性子の無駄食 いを防ぐ効果も期待できる。この組み合わせは、源中 性子強度が弱い場合に、狭い空間で強度を下げないで エネルギーを下げる有効は手段となっている。下部に は鉛層があり、不要な y 線を遮へいしている。その更 に下の空間が照射エリアである。表4には、実機の 性能(暫定値)を示す。医学的な評価条件(プロトコ ル)は、阪大歯学研究科で原子炉 BNCT を 10 年以上 実施しておられる加藤逸郎博士⁷⁾から提供いただい たものである。最も重要な数値である全身線量値は 0.26Sv/照射となっており、かなり低く抑えることに 成功している。図5は、CSePT のイメージ図である。 熱外中性子は、治療室の天井から降り注ぐ形になって おり、患者はベッドに固定され、いろいろな場所に移

動することでいろいろな方向から照射可能である。こ うすることにより、出来るだけ局所的な正常細胞被曝 を避けながら、出来るだけ腫瘍細胞を一様に照射する、 ということが実現できるようになっている。

CSePT の設計に当たっては、世界で初めての p-液 体 Li タイプの BNCT 装置であるため、実験的な検証 が必要だった。中性子のソースターム(中性子強度と 角度分布)については、東北大学で実験的に検証を実 施したが、本体設計そのものについては検証が急務 だった。そこで、2013 年 5 月~7 月、本設計結果を 基に製作した中性子減速アセンブリのモックアップ体 系を米国バーミンガム大学のダイナミトロン加速器施 設に運び込み、核設計手法検証のためのモックアップ 実験を実施した。その結果、十分な熱外中性子の発生 の確認、線量強度の確認、設計コードシステムの検証 と精度の確認、を行うことができた。それを受けて、 2013 年 9 月にはプレス発表³⁾を行い、2014 年から本 格的な設計作業と実機建設に向けた準備作業がスター トした。

表2 阪大BNCT装置(CSePT)仕様

Epi-thermal neutron flux	:	$0.5 \sim 1 \times 10^9 \text{n/cm}^2/\text{sec}$
Accelerator	:	Electrostatic type
Proton energy	:	1.9 ~ 2.8 MeV
Beam current	:	15~40mA
Target	:	Liquid lithium
Velocity at target	:	30m/sec at maximum
Temperature	:	450℃ at maximum
Irradiation room	:	$3m \times 2.5m \times 2.5m$
Construction site	:	Institute of Free Electron Laser(Osaka Univ.)

表3 中性子減速アセンブリ設計目標値

IAEA recommendation is as follows:	
Epi-thermal neutron flux:	> 1x10 ⁹ n/sec/cm ²
Epi-thermal to thermal neutron flux ratio:	> 20
Fast neutron and γ contribution:	$< 2x10^{-13} \text{ Gy} \cdot \text{cm}^2$ (Gy per unit flux)
Current-flux ratio:	> 0.7
In addition, the followings are our own target va	lues.
Whole body dose:	< 0.25 Sv/irradiation
Tritium production:	< 100 Bq/g-Li/3-years (in deuteride moderator)
Material activation:	< Clearance level (except materials near the target)

表4 CSePT実機性能(暫定値)

Neutron flux	Thermal	:	5.8x10 ⁶	n/sec/cm ² /30mA
	Epi-thermal	:	8.1×10^{8}	n/sec/cm ² /30mA
	Fast neutron	:	1.2×10^{8}	n/sec/cm ² /30mA
Dose	Tumor	:	20	Gy-eq
	Normal brain	:	4.1	Gy-eq
Contribution	Fast	:	5.1 x 10 ⁻¹³	$Gy \cdot cm^2$
	Gamma-ray	:	2.7 x 10 ⁻¹³	$Gy \cdot cm^2$
Whole body	Total	:	0.26	Sv/irradiation

図5 阪大液体Li方式BNCT装置(CSePT)の イメージ図

5. BNCT のための計測デバイス開発

著者の研究室では、4章で述べた CSePT 装置の核 設計を進めつつ、その装置が実現した時に必要となる 様々な放射線計測デバイスの開発を進めている。本章 では、3.2 節及び 3.3 節で述べた、中性子場の特性評 価手法の開発(5.1 節~5.4 節)及び治療効果リアル タイム計測装置の開発(5.5 節)について述べる。特 性評価手法開発では、源中性子強度計測法(5.1 節)、 熱外中性子束強度計測法(5.2 節)、低エネルギー中性 子スペクトロメータ開発(5.3 節)及び阪大ボナー球 開発(5.4 節)、についてそれぞれ概要を述べる。

5.1 p-Li 中性子源強度計測⁸⁾

(3) 式で示した p-Li 反応は、3.1 節で述べたとおり、 p-Be 反応と並んで加速器 BNCT に使用される中性子 生成反応である。p-Li 反応断面積を図3に示す。4章 で述べた通り、闘エネルギーから反応断面積が急激に 上昇するため、比較的低い陽子エネルギーで高い中性 子収率を得ることができる。一般的には、低いエネル ギーの中性子が必要な BNCT では有利であると考え られてきた。通常は、2.5MeV 付近の陽子を金属 Li に 照射することで中性子を得る。中性子のエネルギーは、 陽子エネルギーと放出角度が決まれば運動学により一 意的に決まるが、Li 内のエネルギー損失があるため、 単色にはならずエネルギー分布を持つ。図6は、放 出角度に対する中性子のエネルギー分布を示す⁶⁾。陽 子エネルギーEp が、Ep=2.5MeV の場合、中性子エ ネルギーは、後方角度で低く、前方角度で高くなる。 測定すべきエネルギーは、数 10keV ~ 800keV となる。

数 10keV ~ 800keV の中性子強度を測定すること は一般に難しい。本研究では、実機における簡便な計 測の実現のため、箔放射化法を用いることとした。し かし、このエネルギー領域で一般的に使用可能な箔は ほとんど知られていない。これより低い eV 領域のエ ネルギーでは、(n.g)反応が使用できる。またより高 いエネルギー(>~MeV)では、(n,p)反応などの閾反 応が使える。数10keV~800keVは、ちょうどそれ らの間に位置する。そこで、本研究では、非弾性散乱 による核異性体生成反応に注目した。原子核のある励 起準位に有意な半減期がある場合、放射化箔として使 用できる可能性がある。いま、そのエネルギーを Eex とすると、そのエネルギー程度以上の中性子に対して 感度を持つことになる。しかも、放出される y 線エネ ルギーは Eex である。つまり、Eex が数 10keV ~ 800keVになる場合、本目的の放射化箔として使用可 能になる可能性があるし、そのエネルギーのy線であ れば十分に計測可能である。

Table of Isotopes⁹⁾ を詳細に調べると、p-Li で発生 する中性子で核異性体を作る核種は以下のようなもの がある。

⁶⁰Co,⁷⁷Se, ⁷⁹Se, ⁸⁷Sr, ⁹⁴Nb, ⁹⁶Tc, ⁹⁹Tc, ¹⁰¹Rh,
¹⁰⁷Pb,¹⁰⁷Ag, ¹¹¹Cd, ¹¹³In,¹¹⁵In, ¹¹⁷Sn, ¹³³Ba,¹³⁴Cs, ¹³⁵Ba,
¹⁵⁴Eu, ¹⁵⁸Tb,¹⁶³Ho, ¹⁶⁷Er, ¹⁸³W,¹⁸⁹Os, ¹⁹³Pt

この中から、半減期が30秒以上のものを選び、更に、 その閾エネルギー、反応断面積、エネルギー依存性か ら総合的に検討を加え、可能なものを以下の5核種に 絞り込んだ。

¹⁰⁷Ag, ¹¹³In, ¹¹⁵In, ¹³⁵Ba, ¹⁸⁹Os

このうち、¹¹³In, ¹¹⁵In, ¹³⁵Ba については、断面積の 絶対値とエネルギー依存性がほとんど同じであるた め、最も精度よく測定できると予想される¹¹⁵In を選 択した。以上の結果、¹⁰⁷Ag, ¹¹⁵In, ¹⁸⁹Os を最終候補と した。**表5**には、それぞれの基本情報を示す。

表5¹⁰⁷Ag, ¹¹⁵In, ¹⁸⁹Osの基本特性データ

Nuclide	E _Y (keV)	Half-life
$^{107}\mathrm{Ag}$	93.13	44.3 sec
115 In	336.24	4.48 hrs
$^{189}\mathrm{Os}$	30.814	$5.8~\mathrm{hrs}$

これらの放射化箔は、実用前に性能を実証する試験 が必要であり、現在、東北大学の高速中性子実験室 (FNL)において照射実験を進めている。また、これ らの箔は、表5に示す通り特性が異なる。つまり、そ の特性により使用できる場面が異なってくる。最後に それぞれの特徴をまとめる。

- ¹⁰⁷Ag:半減期が短く、中性子源強度が強い実機では最 も簡便なモニターとなる。照射も計測も短時間 で終了する。
- ¹¹⁵In:存在比が大きく、放出 y 線のエネルギーが高い ことから、高精度なモニターとなる。しかし、 低エネルギーでの反応断面積が小さいため、後 方角度に放出される中性子の計測は難しい。ま た、(n,g)反応により生成される¹¹⁶In(半減期 約1時間)の減衰を待つ必要がある。
- ¹⁸⁹Os:低エネルギーでとても高い断面積を示すため、 後方角度に放出される中性子のモニターに使用 できる。しかし、y線のエネルギーが低く、薄 いサンプルを準備する必要があるが、物性的に 難しい。測定では、¹⁹⁰Os(半減期約10分)の 減衰を待つ必要がある。

5.2 熱外中性子束強度計測

BNCTでは、表層がんの治療を除き、熱外中性子 を使用する。熱外中性子場は、原子炉や将来は加速器 で作り出すことができる。特に加速器を用いた場合、 ターゲット、入射粒子の種類やエネルギー等によりス ペクトルが変化するため、熱外中性子場と言っても全 く同じにはならない。つまり、治療を実施する前に、 その熱外中性子場の特性を知ることが極めて大切にな る。中性子場の特性は、主としてエネルギースペクト ルと絶対強度である。本節では、絶対強度を計測する 手法の開発について述べる。5.3 節及び 5.4 節では、 もう1つの特性である中性子エネルギースペクトル測 定手法について述べる。

熱外中性子の絶対強度は、もちろん患者に照射する 状態で測定できることに越したことはないが、予め場 の特性として計測しておけば十分な場合がほとんどで ある。患者が照射を受ける状態では、相対的な強度測 定を行えば、照射後適切な補正により絶対値を知るこ とができるからである。本手法は、放射化法を用いる が、一般的に放射化箔の反応断面積はエネルギー依存 性がある。つまり、エネルギースペクトルが分からな い中性子場では、強度を知ることはできない。そこで、 放射化箔に何らかのフィルターを付けることで、どの エネルギーの中性子に対しても感度が一定になるよう なモニターの開発を目指した¹⁰⁾。

低エネルギーの中性子場では、通常金箔が強度モニ ターとして用いられる。¹⁹⁷Au(n, y)¹⁹⁸Au反応を利用 する。図7に示す通り、この反応の反応断面積は低 エネルギーに大きな共鳴を持つため、熱中性子の計測 には適している。しかし、熱外中性子では感度が下が るため、熱外中性子東モニターとしては少し具合が悪 い。そこで、金箔の回りにポリエチレンなどの中性子 減速材を取り付け、中性子を減速させてから金に吸収 させる、というやり方は考えられる。一方で、熱中性 子は取り除く必要があるため、一番外側にはCdの シートを巻き付けるが、それが原因で、熱外中性子の 低いエネルギー側の中性子がどうしても遮へいされて しまう傾向が出てくる。このため、ポリエチレン減速 材を薄くしたいが、金は図7に示す通り4.9eVに大き な共鳴があり、減速材を薄くするとどうしても放射化 の感度がひずんでしまう。以上のことから、金箔以外 の7つの箔(¹⁵¹Eu, ¹²⁷I, ¹¹⁵In, ⁷¹Ga, ⁵⁵Mn, ³⁷Cl, ²³Na)を 候補として詳細に解析を進めた結果、**図7**に金と一 緒に示す Ga がもっとも感度を平らにできることが分 かった。重要な点は、低エネルギーから高エネルギー にかけて断面積の急激な減少が無いことと、鋭い共鳴 が無いことが挙げられる。モニターは直径が 7.1cmで ありポリエチレン製である。外側の Cd 層は僅か 0.05mm にしている。放射化の感度は図8のようにな り、十分一様になっていることが分かる。なお、実際 の使用に当たっては、Ga の融点が 30℃と非常に低い ため、多少高価であるが GaN を使用することとして いる。

ところで、図8の感度は十分一様になっているが、 詳しく見ると10keV ~ 100keV に多少感度が存在す ることが見て取れる。この影響はそれほど大きくはな いが、BNCT では、10keV を超える高速中性子に対 しては注意が必要であることが知られている。10keV を超えると人に与える悪影響が大きくなるためで、こ の事実が10keV を熱外中性子の上限エネルギーとし ている大きな理由である。また、特に加速器中性子源 の場合、4章に述べたとおり、減速材を設置する領域 が狭く、どうしても高エネルギー中性子が減速されき れず残ってしまうことがある。つまり、10keVを超 えるエネルギー領域の中性子計測も正確にできる必要 がある、ということになる。そこで、第2モニターと して、10keVを超える中性子にだけ感度を有する検 出器を製作することとした¹¹⁾。第1モニターと第2 モニター両者を用いることで、0.5eV ~ 10keVの中性 子についても正確に計測できるようになる。

第2モニターの設計及び製作はすでに終了している が、論文が査読中であり現段階で詳細を記載すること はできない。キーとなるアイデアは、ポリエチレンの 厚さが微妙に異なる2種類のモニターを製作すること で、その反応率の差を取ることで、高エネルギーの中 性子寄与を抜き出す、というものである。これはとて も優れた方法であり、他のエネルギー領域にも応用で きる可能性がある。本モニターは、10keV~数100keV のエネルギー領域の中性子を絶対値で計測できる初め てのモニターである。

なお、両検出器とも実験的な検証が重要であり不可 欠である。2014 年度までに大阪大学オクタビアン装 置を用いた予備実験を終えており、解析の結果、概ね 良好な性能を持つことが確認されている。

5.3 比例計数管を用いた低エネルギー中性子スペク トロメータ

熱外領域の中性子のエネルギースペクトルを計測す ることは難しい。一般的には、いくつかのエネルギー に対し感度が異なる検出器(例えば、異なる放射化箔 や異なる材質や厚さの減速材を用いるなど)による実 験値から多群のスペクトルを推定する、という方法が 用いられる。手法は確立しているが、結果は明らかに 初期値に影響されるため、精度が高いかどうかについ ては、慎重な議論が必要である。我々の研究室では、 初期値に頼ることなく、出来るだけ実験的にスペクト ルを決定することを目指して2つの検出器を開発して いる。1つは本節で述べる新しい原理に基づくもので あり^{12,13)}、もう1つは、ボナー球を新たなアイデアで 改良したものであり次節に詳しく述べた¹⁴⁾。

低エネルギーの中性子の検出自体は簡単であるが、 エネルギーを区別して計測することは困難である。な ぜなら、中性子を検出する核反応で発生するエネル

ギー(Q値)は、中性子そのもののエネルギーよりも 桁違いに高いからである。つまり、その微妙なエネル ギー差に感度を有する検出器でなければならない。一 般的には、低エネルギー中性子は、個数のみを計数す るような検出器や、その応答が、ある物理量の応答に 近い検出器を用いて、限定的に計測されている。つま り、普通の方法では難しいことが以前から知られてい た。では、エネルギーの微妙な変化に対して変化する 物理量はなんであるか考えてみる。その一つに反応断 面積がある。例えば、³He、⁶Li及び¹⁰Bは、**図9**に示 す通り、低エネルギーで著しく断面積が大きい。反応 の結果、荷電粒子を放出するため検出の問題も無い。 中性子のエネルギーの微少な変化に対して断面積の変 化が大きいことも見て取れる。断面積の形状は、いわ ゆる1/vカーブと呼ばれ、広いエネルギー範囲で中 性子エネルギーと断面積値が1対1対応を示している。 実は、特に³He 及び¹⁰Bは、一般的な中性子検出器と して利用されているため、簡単に利用することができ る。本研究では、³He を検出媒体とする検出器を利用 した。検出器の写真と回路を図10に示す。中性子の 検出は、図9に示す³He(n,p)反応を利用し、生成す る荷電粒子を電界により増幅及び収集し、パルス信号 化することで行っている。これは、いわゆる比例計数 管と呼ばれる検出器になる。本研究では、この比例計 数管の両端から高圧を印加することにより、両端から 信号を取得できるようになっている、いわゆる位置敏 感型比例計数管と呼ばれるものを使用した。この場合、 中心に張られている芯線の比抵抗を大きくすること で、両端からの信号の大きさを抵抗値に比例して小さ くすることができるようになる。つまり、信号の大き さの比から検出された場所を特定できることになる。 いま、1個の低エネルギー中性子が検出器の軸に平行 に左端から入射する場合を考える。この中性子のエネ ルギーは低いので、図9から考えると、入射すると 比較的早い段階で検出されるはずである。しかし、エ ネルギーが高い場合、かなり奥の方まで侵入してから 検出されると予想できる。つまり、今、検出された位 置分布を考えるとき、低エネルギーと高エネルギーで は、位置分布が異なることが分かる。典型的な検出位 置分布を図11に示す。図11に示す検出器応答を各 中性子エネルギーに対して準備し、検出位置分布から 逆問題を解くことで、原理的に中性子スペクトルを求 めることができる。

図10 位置敏感型比例計数管と測定システム

著者の研究室では、過去数年間、本スペクトロメー タの実験的検証を実施してきた。検証を実施するため には、標準的な中性子場が必要である。研究室が所有 する AmBe 中性子源を用い、熱及び熱外中性子場を 設計、製作した上で、図 12 のような体系を構築し、 マルチパラメータシステムを用いて両端からの信号の 二次元スペクトル測定を行った。その結果から検出深 さ分布を評価し、逆問題を解いて中性子のエネルギー 分布を再構成した。例として図 13 に熱外中性子場に おける計算と実験との比較を示す。両者は比較的よく 一致していることが分かる。現在は、放射化法を用い た検証を目指し、DT 中性子源を用いた実験を計画し ているところである。

なお、本研究は、科研費(加速器 BNCT 中性子源 用低エネルギー中性子スペクトロメータの開発研究 (基盤研究(B),2007年~2009年,課題番号: 19360429))による援助により実施された。

5.4 阪大ボナー球 13)

5.3 節で述べたスペクトロメータのように、気体を 用いた比例計数管の場合、液体の場合よりも位置分解 能を向上させることができるため、結果的にエネル ギー分解能を上げられる可能性がある。しかし反面、 ダイナミックレンジを広げることは難しく、5.3 節の スペクトロメータの場合、レスポンスに際立った構造 (ピークなど)もないため、高精度に測定できるかど うかは慎重に議論する必要がある。本節では、ABNS- BNCT のターゲットから放出される源中性子スペク トルを計測する検出器を目指しながら、大きくは BNCT 応用に特化せず、一般的な中性子計測に使用 できる、広いダイナミックレンジを持つ新しいボナー タイプのスペクトロメータの開発について述べる。

ボナータイプのスペクトロメータの問題点として は、多数のボナー球を製作することが必要で、それが とても煩雑なことがある。エネルギー群数が20群の 場合、高精度のスペクトル推定のためには、原理的に は20種類のボナー球が必要になる。しかし、現実に はそれは難しいため、精度が高い(と思われる)初期 推定スペクトルを準備した上で、Adjustment 法と呼 ばれる方法を用いて推定が行われる。本研究では、初 期推定スペクトルを使うことなく、広いダイナミック レンジを持ち、測定も煩雑にならない新しいボナー球 を提案した。ポイントは、液体減速材の利用である。 液体減速材により、減速能を無限段階に変えることが できるため、原理的には、無限群のエネルギースペク トル推定が可能になる。実際には、いわば準静的に減 速能を変化させ、検出器応答を記録し、その結果から エネルギースペクトルを推定する。

図14に、検出器の模式図を示す。中心が球状の ³He 検出器である。前方には液体の減速材を配置して いる。中性子は左方向から入射する。測定に当たっては、 この厚さを連続的に変化させる。つまり、減速材は、 常温で液体である必要がある。本研究では、ホウ酸水、 重水、ホウ酸トリメチルなどの候補材料を検討し、最 終的にホウ酸トリメチルを選択した。応答関数の変化 が大きく、スペクトルの再現性に優れているからであ る。図15には、減速材厚さに対する検出器の応答を 重水のケースと比較して示す。減速材厚さの変化に対 する応答関数の変化が十分に大きいことが分かる。図 16は、スペクトルの再現性を数値計算で確かめた結果 である。黒の実線が真のスペクトルであるが、これを 図15の応答で畳み込み積分し、再びベイズ推定法に よりスペクトルを推定した。再現性は重水を除き概ね 良好であった。図 16 (a) の一致がより良いが、これ は統計量無限大のケースである。実際には実験誤差が 加わるため、様々な実験誤差を仮定した計算を実施し た結果、2%程度まで統計誤差を向上させた場合(図 16 (b))、概ね良好な再現性が得られることが分かった。 図16(b)から分かる通り、候補材料の中では、ホウ 酸トリメチルが最もいい一致を示す。現在は、プロト

タイプの検出器を製作し、実験による検証を行ってい る。

5.5 治療効果リアルタイム計測^{15~19)}

治療効果のリアルタイム計測のためには、BNCT に特化した SPECT 装置(BNCT-SPECT)の開発が 必要である。SPECT 装置が、非常に強力な中性子バッ クグラウンド下に置かれるためである。3.3 節でも述 べたとおり、BNCT-SPECT では、7Liの第一励起レ ベルからの即発 y線(478keV)を精度よく計測する ことが求められる。計測装置に要求される条件は3つ ある。

(1) 治療(照射)時間で十分な計数値を得る。

治療時間は1時間前後である。その間で、十分な計 数値が得られることが重要である。本研究では、1000 カウント/時間、を目指した。また、当然、統計精度 が問題となる。非常に高い中性子バックグラウンド下 でも信号対雑音(Signal to Noise (S/N))比が1を 超えることを、補助的にではあるが重要な設計条件と した。

(2) 十分な空間分解能を有する。

SPECT 装置により治療効果を3次元的に見ること ができる。その場合、空間分解能は非常に重要である。 医師の希望等から本研究では PET レベルの分解能を 目指した。具体的には数 mm 以下である。

(3) 十分なエネルギー分解能を有する。

この計測では、478keVのすぐ隣に消滅 y 線の検出 が予想される。消滅 y 線は511keVであり、エネルギー の高い y 線が存在する場では電子対生成が起こるため 必ず発生する。中性子場では、(n, y)反応により高 エネルギー y 線が必ず発生することが原因である。こ の2つの y 線を分離して計測する必要がある。

1000 カウント / 時間と数 mm 以下の空間分解能を 同時に実現するためには、y線の入射面を非常に小さ くした上で、十分な厚さを持たせる必要がある。更に、 478keV と 511keV の分離計測を実現するため、良好 なエネルギー分解能(理論的には、511keV – 478keV = 33keV より小さい)を持つ必要がある。以 上の条件を満たすy線検出素子材料を検討した結果、 CdTe 半導体検出器を用いることとした。

検出器の製作は3段階で実施した。具体的には、1 素子の検出器を2回製作した後、2素子の検出器を製 作した。図17に2回目に製作した1素子検出器の CdTe結晶と検出器の外観を示す。また、この検出器 の検出効率とエネルギー分解能を図18及び図19に それぞれ示す。これらの結果から、1000 カウント / 時間と 478keV と 511keV の分離測定は可能であるこ とを確認した。次いで、実際の検出器を含む計測アセ ンブリを設計した。測定室や人体も含めてモデル化し た上で、MCNP-5⁵⁾ による中性子と y 線のカップリン グ輸送計算を実施し S/N 比を評価した。図 20 には、 CdTe 素子による計測波高分布の計算結果を示す。こ の結果、S/N 比は、1 を大幅に下回る結果となった。

図 17 1 素子の CdTe 結晶(下)と検出器(上)

BNCT-SPECT で使用する CdTe 検出器は、64× 64素子のアレー型になる。それを4個組み合わせて 一つの SPECT 装置とする計画である。また、読み出 しには ASIC (Application Specific Integrated Circuit) を用いるため、同時読み出しによる、同時もしくは非 同時計数が容易に行える。そこで、非同時計数を行っ た場合、どの程度 S/N 比が改善できるかを実験的に 調べた。図 **21** は、そのために製作した 2 素子 CdTe 結晶である。この結晶が現段階での設計上の最終版で あり、2mm × 2.5mm × 40mm の寸法になっている。 この素子を用いて、同時計数割合を実験的に計測した。 その結果、同時計数割合は5%となり、同時計数事象 が存在することと S/N 比の向上に利用できることが 確認できた。理論計算により外挿した結果、64 × 64 素子にした場合、同時計数事象は、50%程度まで上昇 することが判明した。

図 21 2 素子 CdTe 結晶 (2mm × 2.5mm × 40mm) 1mm × 2.5mm × 40mm の結晶 2 枚を金線を挟んで 貼り合わせその部分を接地する型式とした。

以上の研究により、CdTe半導体検出器による BNCT-SPECT の実現の見通しを得た。今後は、実機 の製作に移る予定であるが、CdTe 結晶は非常に高価 であり、現在のところ資金調達の目途は立っていない 状況である。

なお、本研究は、科研費(BNCT のための治療効 果リアルタイム測定用 SPECT 装置の開発研究(基盤 研究(B),2010年~2014年,課題番号:22360405)) による援助により実施された。

6. おわりに

ここまで著者の研究室で現在実施している BNCT に関する工学研究を概観してきた。BNCT を加速器 で実施する場合、それが新たな試みであることから、 解決しなければならない工学的問題が多数存在する。 それらを一つ一つ解決することが、加速器 BNCT を 実現するカギである。もちろん、本体の加速器及び中 性子減速アセンブリの設計及び製作が先行する必要が あるが、その結果を待っている時間的な余裕はない。 現状は、本体設計を進めながら、上記の工学的問題に 取り組み、連続的にフィードバックする、という手続 きを踏んでいる。加速器 BNCT の実現は、これから 2, 3年が勝負になる。研究室が一丸となり、全力で取り 組む所存である。

References

- Ministry of Health, Labor and Welfare, Japan, <u>http://www.mhlw.go.jp/toukei/saikin/hw/jinkou/geppo/</u> nengail1/kekka03.html#k3_2
- 2) W. A. G. Sauerwein, A. Wittig, R. Moss, Y. Nakagawa

(Eds.) , Neutron Capture Therapy: Principles and Applications, Springer (2012) .

3) 第11回及び第12回日本中性子捕捉療法学会(2013,2014) 及び中性子捕捉療法国際会議(ICNCT-16、ヘルシンキ) (2014)で多数発表有り。また、2013年9月6日にはプレ ス発表を実施

(<u>http://www.osaka-u.ac.jp/ja/news/ResearchRelea</u>se/2013/09/20130906_1、もしくは<u>http://www.sumitomocorp.</u>cojp/news/detail/id=27107) 詳しくは、著者までお問い合わせください。

- IAEA, Current status of neutron capture therapy, IAEA-TECDOC-1223, International Atomic Energy Agency (2001).
- X-5 Monte Carlo Team, "MCNP A General Monte Carlo N-Particle Transport Code, Version 5", LA-UR-03-1987. Los Alamos National Laboratory. Los Alamos, NM (2003).
- M. Drosg, "DRORG-2000: Neutron Source Reactions", Nuclear Data Service, IAEA (2005).
- Itsuro Kato, Graduate School of Dentistry, Osaka University, private communication (2014).
- I. Murata, Y. Otani, F. Sato, "Neutron intensity monitor with activation foil for p-Li neutron source for BNCT -Feasibility test of the concept-", *Applied Radiation and Isotopes* (2015) . in press
- 9) R. B. Firestone, V. S. Shirley (Ed.) , Table of Isotopes, Eighth Ed. Vol. I, II, John Wiley and Sons, Inc. (1996) .
- 10) X. Guan, M. Manabe, I. Murata, T. Wang, "Design of an epi-thermal neutron flux intensity monitor with GaN wafer for boron neutron capture therapy", J. Nucl. Sci. Technol., 52, 503-508 (2015).
- 11) X. Guan, I. Murata, T. Wang, "Design study of neutron flux intensity monitor between ten and several hundred keV for BNCT", J. Nucl. Sci. Technol. (2014) . in press
- 12) I. Murata, H. Miyamaru, "Low Energy Neutron Spectrometer Using Position Sensitive Proportional

Counter – Feasibility Study Based on Numerical Analysis -," Nucl. Instrum. Meth. in Phys. Res. A589, 445-454 (2008).

- 13) I. Murata, T. Obata, "Boron Neutron Capture Therapy (BNCT) - Low-Energy Neutron Spectrometer for Neutron Field Characterization -", *Plasma and Fusion Res.*, 9, 4401107 (2014).
- 14) S. Tamaki, F. Sato, I. Murata, "A Feasibility Design Study on A Neutron Spectrometer for BNCT with Liquid Moderator", *Applied Radiation and Isotopes* (2015). in press
- 15) I. Murata, T. Mukai, S. Nakamura, H. Miyamaru, I. Kato, "Development of A Thick CdTe Detector for BNCT-SPECT," *Appl. Radiat. Isotopes*, 69, pp. 1706-1709 (2011).
- 16) I. Murata, T. Mukai, M. Ito, H. Miyamaru, S. Yoshida, "Feasibility study on BNCT-SPECT using a CdTe detector," *Progress in Nucl. Sci. Technol.*, 1, pp. 267-270 (2011).
- 17) S. Nakamura, T. Mukai, M. Manabe, I. Murata, "Precise Numerical Simulation of Gamma-ray Pulse Height Spectrum Measured with a CdTe Detector Designed for BNCT-SPECT," *Progress in Nucl. Sci. Technol.*, 3, pp. 52-55 (2012).
- 18) I. Murata, S. Nakamura, M. Manabe, H. Miyamaru, I. Kato, "Characterization Measurement of A Thick CdTe Detector for BNCT-SPECT Detection Efficiency and Energy Resolution -," *Applied Radiation and Isotopes*, 88, pp. 129-133 (2014).
- 19) M. Manabe, S. Nakamura, I. Murata, "Study on Measuring Device Arrangement of Array-type CdTe Detector for BNCT-SPECT," Reports of Practical Oncology and Radiotherapy (2015) . in press

(原子力 昭和 61 年卒 63 年修士)